Representations of Hecke algebras and the Alexander polynomial

dc.contributor.authorBlack, Samson, 1979-
dc.date.accessioned2010-11-30T01:26:26Z
dc.date.available2010-11-30T01:26:26Z
dc.date.issued2010-06
dc.descriptionviii, 50 p. : ill. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number.en_US
dc.description.abstractWe study a certain quotient of the Iwahori-Hecke algebra of the symmetric group Sd , called the super Temperley-Lieb algebra STLd. The Alexander polynomial of a braid can be computed via a certain specialization of the Markov trace which descends to STLd. Combining this point of view with Ocneanu's formula for the Markov trace and Young's seminormal form, we deduce a new state-sum formula for the Alexander polynomial. We also give a direct combinatorial proof of this result.en_US
dc.description.sponsorshipCommittee in charge: Arkady Vaintrob, Co-Chairperson, Mathematics Jonathan Brundan, Co-Chairperson, Mathematics; Victor Ostrik, Member, Mathematics; Dev Sinha, Member, Mathematics; Paul van Donkelaar, Outside Member, Human Physiologyen_US
dc.identifier.urihttps://hdl.handle.net/1794/10847
dc.language.isoen_USen_US
dc.publisherUniversity of Oregonen_US
dc.relation.ispartofseriesUniversity of Oregon theses, Dept. of Mathematics, Ph. D., 2010;
dc.subjectHecke algebrasen_US
dc.subjectAlexander polynomalen_US
dc.subjectSymmetric groupsen_US
dc.subjectMarkov traceen_US
dc.subjectMathematicsen_US
dc.subjectTheoretical mathematicsen_US
dc.titleRepresentations of Hecke algebras and the Alexander polynomialen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Black_Samson_phd2010sp.pdf
Size:
860.89 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 2 of 2
Name:
license.txt
Size:
2.21 KB
Format:
Item-specific license agreed upon to submission
Description:
Name:
Black_Samson.pdf
Size:
29.29 KB
Format:
Adobe Portable Document Format
Description:
author's permission