A Tailored Approach to Engineering Solid State Single Photon Sources

dc.contributor.advisorAleman, Benjamin
dc.contributor.authorKlaiss, Rachael
dc.date.accessioned2024-01-09T22:49:42Z
dc.date.available2024-01-09T22:49:42Z
dc.date.issued2024-01-09
dc.description.abstractIntegrated quantum information technologies such as photonic circuits, quantum transducers, and magnetic sensors require robust single-photon sources in precise locations. Solid-state single photon emitters (SPEs) hosted by mid-bandgap defects in 2D material hexagonal boron nitride (hBN) are bright and stable at room temperature and demonstrate strong coupling to external fields, making them desirable candidates for quantum device applications. However, the specific atomic structure of hBN SPEs remains unidentified, making deterministic engineering a challenge. While recent studies have narrowed the range of possible defect candidates by demonstrating the role of carbon in hBN SPEs, the methods to engineer carbon-based defects in hBN either produce randomly located emitters or require bottom-up crystal growth on structured substrates. We achieved patterned arrays of SPEs via focused ion beam (FIB) milling followed by chemical vapor deposition (CVD) of nanocrystalline graphite source for carbon diffusion, and found that both techniques are necessary for significant and repeatable creation of SPEs. This technique creates localized emitters with ten times the yield of carbon annealing alone. Furthermore, by adjusting the parameters of FIB exposure time and carbon annealing time, we found multiple different parameter combinations that successfully created SPEs, demonstrating the adjustability of this technique based on device application requirements. Additionally, we performed atomic force microscopy to characterize the surface morphology of hBN regions patterned by Ga+ FIB to create SPEs at a range of ion doses and found that material swelling is strongly correlated to successful SPE creation. Furthermore, we simulated vacancy and impurity profiles to elucidate how Ga+ FIB patterning induces lattice damage in the form of vacancies, structural voids, and amorphous layers, creating a diffusion barrier to control the introduction of carbon impurities to engineer isolated SPEs with high resolution of process control. Our results provide novel insight into the formation of hBN SPEs created by high-energy, heavy-ion FIB that can be leveraged for monolithic hBN photonic devices and a wide range of low-dimensional solid-state SPE hosts. This dissertation includes previously published and unpublished coauthored material.en_US
dc.identifier.urihttps://hdl.handle.net/1794/29179
dc.language.isoen_US
dc.publisherUniversity of Oregon
dc.rightsAll Rights Reserved.
dc.subject2D materialsen_US
dc.subjectDefect engineeringen_US
dc.subjectMaterials characterizationen_US
dc.subjectSingle photon sourcesen_US
dc.titleA Tailored Approach to Engineering Solid State Single Photon Sources
dc.typeElectronic Thesis or Dissertation
thesis.degree.disciplineDepartment of Physics
thesis.degree.grantorUniversity of Oregon
thesis.degree.leveldoctoral
thesis.degree.namePh.D.

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Klaiss_oregon_0171A_13613.pdf
Size:
8.33 MB
Format:
Adobe Portable Document Format