University Scholarship
Permanent URI for this community
Browse
Browsing University Scholarship by Subject "16S"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Differing effects of four building materials on viable bacterial communities and VOCs(Elsevier, 2021) Mhuireach, Gwynne A.; Dietz, Leslie; Griffiths, Willem; Horve, Patrick Finn; Laguerre, Aurelie; Northcutt, Dale; Vandegrift, Roo; Gall, Elliott; Van Den Wymelenberg, KevinIndoor environmental quality is a paramount concern among architects. Exposure to VOCs and microorganisms impacts occupant health, yet the role of materials on these exposures remains poorly understood. In this study, we placed four material types in individual microcosms to test whether material type influences bacterial community structure and VOC emission. We used culture-independent methods to characterize bacterial communities and TD-GC-MS to measure VOC emission. We found that viable bacterial communities had different patterns of abundance, diversity, and composition, in comparison with total (viable plus dead cells) bacterial communities. Examining viable bacteria only, Earth had the highest abundance and diversity, unique community composition, and overall negative VOC emission. Timber had the lowest bacterial abundance, composition similar to Gypsum and Concrete, and the highest VOC emission rate. Our research provides further evidence that architects’ decisions about building materials can influence chemical and microbial exposures indoors.Item Open Access Temporary establishment of bacteria from indoor plant leaves and soil on human skin(BMC, 2022-12-22) Mhuireach, Gwynne A.; Fahimipour, Ashkaan K.; Vandegrift, Roo; Muscarella, Mario E.; Hickey, Roxana; Bateman, Ashley C.; Van Den Wymelenberg, Kevin G.; Bohannan, Brendan J. M.Background: Plants are found in a large percentage of indoor environments, yet the potential for bacteria associated with indoor plant leaves and soil to colonize human skin remains unclear. We report results of experiments in a controlled climate chamber to characterize bacterial communities inhabiting the substrates and leaves of five indoor plant species, and quantify microbial transfer dynamics and residence times on human skin following simulated touch contact events. Controlled bacterial propagule transfer events with soil and leaf donors were applied to the arms of human occupants and repeatedly measured over a 24-h period using 16S rRNA gene amplicon sequencing. Results: Substrate samples had greater biomass and alpha diversity compared to leaves and baseline skin bacterial communities, as well as dissimilar taxonomic compositions. Despite these differences in donor community diversity and biomass, we observed repeatable patterns in the dynamics of transfer events. Recipient human skin bacterial communities increased in alpha diversity and became more similar to donor communities, an effect which, for soil contact only, persisted for at least 24 h. Washing with soap and water effectively returned communities to their preperturbed state, although some abundant soil taxa resisted removal through washing. Conclusions: This study represents an initial characterization of bacterial relationships between humans and indoor plants, which represent a potentially valuable element of biodiversity in the built environment. Although environmental microbiota are unlikely to permanently colonize skin following a single contact event, repeated or continuous exposures to indoor biodiversity may be increasingly relevant for the functioning and diversity of the human microbiome as urbanization continues.